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a b s t r a c t

The work by U.H. Kurzweg for the enhanced longitudinal heat transfer of a Newtonian fluid in zero-mean
oscillatory laminar flows in tubes subjected to an axial temperature gradient [U.H. Kurzweg, J. Heat
Transfer 107 (1985) 459–462] is generalized for the case of a viscoelastic Maxwell fluid. While Kurzweg
discovered that a Newtonian fluid exhibits a single maximum value of the effective diffusivity for a spe-
cific oscillation frequency, several maxima for different resonant frequencies are found in the case of the
Maxwell fluid. The absolute maximum of the enhanced thermal diffusivity for the viscoelastic fluid and,
consequently, the axial heat transfer in the tube, may be much higher than those for the Newtonian fluid.
Since this absolute maximum increases as the radius of the tube decreases, a possible application may be
to improve the efficiency of micro- and nano-thermal devices through the enhancement of the heat trans-
fer rates in those devices. We provide two specific examples of heat transfer enhancement: a standard
viscoelastic fluid (CPyCl/NaSal) oscillating in a macroscopic tube (scale of centimeters) and water oscil-
lating at high frequencies in a tube of nanometric scale under conditions similar to those used experi-
mentally in water nanoresonators.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transfer enhancement in fluids plays an important role in
the design of many traditional engineering devices such as heat
exchangers and cooling modules (see for instance [1] and refer-
ences therein). Recently, it has also become a must in processes
involving heat removal from components such as electronic chips
and other similar high energy devices, as well as in nanofluidic
applications [2,3].

Among different enhancement methods, the use of oscillatory
flows deserves a special mention. In fact, it has been determined
that the existence of an oscillatory flow may improve a given trans-
port process. For instance, the axial dispersion of contaminants
within laminar oscillatory flows in capillary tubes is considerably
larger than that obtained by pure molecular diffusion in the ab-
sence of flow [4,5]. Moreover, it has been found that the dynamic
permeability of a viscoelastic fluid flowing in a tube can be sub-
stantially enhanced at specific resonant oscillation frequencies
[6–8]. Under certain conditions, an enhanced flow rate can be
achieved. Recently, this resonant behavior was experimentally
observed and the enhancement at the frequencies predicted by
the theory was confirmed [9,10]. Owing to the analogy between
ll rights reserved.

ax: +52 777 325 00 18.
heat and mass transfer, it was recognized by Kurzweg [11–13] that
in a zero-mean oscillatory flow of a Newtonian fluid in a duct con-
necting two fluid reservoirs at different temperatures, the effective
thermal diffusivity reaches a maximum for a specific oscillation
frequency. This leads to an enhanced longitudinal heat transfer
which involves no net mass transfer as long as the flow remains
laminar. In the presence of a longitudinal temperature gradient,
the enhancement is produced by the combination of two mecha-
nisms of thermal energy transport, namely, the lateral diffusive
transport through boundary layers and walls and the periodic lon-
gitudinal convective transport [13,14]. This can result in a very sig-
nificant increase in the longitudinal heat transport capability of the
fluid once tuned conditions are reached. In fact, using water in a
high-frequency oscillatory flow within a capillary bundle connect-
ing two reservoirs at different temperatures, Kurzweg and Zhao
[11] found that effective thermal diffusivities are about four orders
of magnitude larger than the molecular diffusivity of water, the
heat transfer rates being comparable to those achieved with heat
pipes.

Originally, the work of Kurzweg pointed to applications such as
the removal of heat from radioactive fluids or from hazardous
chemical solutions where a rapid removal of heat without an
accompanying convective mass transfer is required [15]. Nowa-
days, Kurzweg’s method for heat transfer enhancement using oscil-
latory flows becomes potentially interesting for micro and
nanofluidic applications. In fact, the important characteristics of
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Nomenclature

a pipe radius (m)
A cross-sectional area of the tube (m2)
c specific heat (J kg�1 K�1)
De Deborah number (=tmg/a2q )
Hx ratio of heat fluxes
J0 cylindrical Bessel function of zeroth order
J1 cylindrical Bessel function of first order
k fluid thermal conductivity (W m�1 K�1)
L characteristic length, pipe length (m)
p pressure (N m�2)
Pr Prandtl number (=g/qa)
Pe Péclet number (=voa/a)
q00m molecular heat flux
q00o heat flux under oscillatory flow
r radial coordinate (m)
t time (s)
tm fluid relaxation time (s)
T fluid temperature (K)
v fluid velocity vector (m s�1)

v axial fluid velocity component (m s�1)
Wi Weissenberg number (=xtm)
Wo Womersley number ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qx=g

p
x axial coordinate (m)

Greek symbols
a fluid thermal diffusivity (m2 s�1)
ae effective fluid thermal diffusivity (m2 s�1)
âe dimensionless effective thermal diffusivity (=ae/a)
bv frequency parameter of the Bessel differential equation

for the velocity
bT frequency parameter of the Bessel differential equation

for the temperature
c time-averaged axial temperature gradient (K m�1)
g dynamic viscosity (kg m�1 s�1)
q mass density (kg m�3)
~s viscous stress tensor (kg m�1 s�2)
x angular frequency (radians s�1)
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this heat transfer enhancement process are retained provided that
the flow is strictly laminar and, consequently, it is applicable for
low-Reynolds number flows. Kurzweg [13] stated that optimum
heat-transfer devices based on this concept require narrow chan-
nels in which viscous effects are large enough to prevent the
appearance of turbulence. Moreover, the process is less efficient
at very low frequencies so that middle- and high-frequency appli-
cations should be preferred. On the other hand, in a recent paper
Yakhot and Colosqui [16] analyzed a flow generated by an infinite
plate in oscillatory motion (Stokes’ second problem) in the whole
range of oscillating dimensionless frequencies 0 6xtm 61, where
x is the angular oscillation frequency and tm is the Maxwell relax-
ation time. Their solution describes a transition, observed experi-
mentally, from a viscoelastic behavior of a Newtonian fluid
(xtm� 1) to a dynamics dominated by pure elastic effects
(xtm� 1). They showed that results agree with experiments on
nanoresonators operating in a wide range of pressure and fre-
quency variation in both gases and water [17]. An important re-
mark of this paper is that high-frequency low-Reynolds number
flows, where the inertial contributions are negligibly small, are
rheological. More recently Ekinci et al. [18], have emphasized that
many interesting phenomena, including enhanced heat transfer in
nanoparticle-seeded fluids, occur in a range of parameters where
the Newtonian fluid approximation breaks down. In this context,
the exploration of oscillating viscoelastic fluids for heat transfer
enhancement purposes becomes relevant.

A number of heat transfer studies in confined viscoelastic fluids
have been recently conducted [19–21]. However, the use of oscil-
lating viscoelastic fluids for the enhanced transport of heat, apart
from a preliminary exploration for solar applications [22] has, to
our knowledge, not been considered so far. This is precisely the
main aim of this paper. Here, the analysis performed by Kurzweg
[12] for the enhanced longitudinal heat transfer in a zero-mean
oscillatory laminar flow in a tube connecting two reservoirs at dif-
ferent temperatures, is generalized in two ways. First, we provide
an analytical solution for the fluid temperature in a cylindrical duct
under insulating wall conditions that is applicable to both Newto-
nian and Maxwellian fluids in oscillatory motion and, most likely
with minor modifications, also for a variety of other viscoelastic
fluids because of the linear suggested regime. We note that, in con-
trast with this analytical result, for the case of a Newtonian fluid
Kurzweg [12] provided an approximate solution based on a multi-
scale expansion technique that is only valid for small values of the
product Wo2 Pr, where Wo ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qx=g

p
and Pr = g/qa are the

Womersley and Prandtl numbers, respectively. Here, q, g and
a = k/(qc) are the mass density, dynamic viscosity and molecular
thermal diffusivity with c and k being the specific heat and thermal
conductivity of the fluid, respectively, while a is the characteristic
length scale. Second, using the fluid velocity and temperature ana-
lytic profiles, we calculate an explicit expression of the effective
thermal diffusivity for a Maxwell fluid and explore its behavior
in a wide range of Womersley and Prandtl numbers, including
the Newtonian limit where Kurzweg’s results are recovered [13].
The analysis of the effective thermal diffusivity enables us to dem-
onstrate the longitudinal heat transfer enhancement for viscoelas-
tic fluids in oscillatory motion and the existence of multiple
resonant frequencies.

The paper is organized as follows. In Section 2 we set out the
theoretical framework and compute the velocity and temperature
fields for both the Newtonian and the Maxwell fluid. This is fol-
lowed in Section 3 by the computation of the enhanced thermal
diffusivity and the dimensionless heat flux. The paper is closed in
Section 4 with some discussion and concluding remarks.

2. Theoretical model

We consider an oscillating incompressible laminar flow in a
tube of radius a and length L. The oscillatory motion of the working
fluid is driven by a harmonic pressure gradient applied in the lon-
gitudinal x-direction. We assume that the ends of the tube are con-
nected to thermal reservoirs of constant but different temperature,
that is, T(x = 0) = T1 and T(x = L) = T2, where T1 > T2. Moreover, the
tube wall is assumed to be thermally insulated so that heat can
only be transferred in the x-direction.

We start the analysis with the governing balance equations,
namely, the continuity equation for an incompressible fluid,

r � v ¼ 0; ð1Þ

the momentum balance equation,

q
@v
@t
þ qðv � rÞv ¼ �rp�r � ~s; ð2Þ



1 Note that the elastic behavior may be manifested when De > 1 which for instance
n occur, for a given relaxation time, if the characteristic length scale a is sufficiently
all. Also, elastic behavior may appear when the oscillating frequency is very large

such that Wi = xtm� 1.
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and the energy balance equation,

qc
@T
@t
þ v � rT

� �
¼ kr2T: ð3Þ

Here v, p and T are velocity, pressure and temperature of the fluid,
respectively, while ~s is the viscous stress tensor. In Eq. (3) the vis-
cous heating term has been neglected since usually this term is only
important when dealing with high Prandtl number fluids, as viscous
oils. In fact, typical temperature differences produced by viscous
dissipation are DT = Pr(xDx)2/c [13]. Therefore, viscous heating will
be important provided that DT compares with the temperature dif-
ference established by the fluid reservoirs at the extreme of the
tube.

We consider that ~s satisfies the linear form of the Maxwell mod-
el, namely

tm
@~s

@t
¼ �grv � ~s: ð4Þ

It is clear that in the limit tm ? 0, Eq. (4) reduces to the constitutive
equation for a Newtonian fluid. Therefore, in what follows we ad-
dress the problem in a general form for a linear Maxwell fluid bear-
ing in mind that the Newtonian case can be recovered by taking the
limit tm ? 0. Recent experimental results indicate that the linear
approximation (4) is suitable for a reliable description for low Rey-
nolds numbers (<10�3) and low (0.6 s�1) shear rates [9,10]. This is
precisely the flow regime that will be considered in this paper.

2.1. Velocity profile

We first consider the oscillatory laminar flow of a Maxwell fluid
in a long tube of circular cross-section. Border effects at the ends of
the tube can be disregarded for distances from the edge larger than
the entrance length which is proportional to the square of the
thickness of the oscillating boundary layer on the walls of the tube
[23]. Therefore, assuming that the flow is fully developed, the only
velocity component is in the axial direction and takes the form
v = v(r, t), so that the continuity equation is identically satisfied.
Under these conditions, Eqs. (2) and (4) can be combined to give
the equation of motion in the form

tm
@2v
@t2 þ

@v
@t
¼ � 1

q
tm

@

@t
@p
@x

� �
þ @p
@x

� �
þ g

q
1
r
@

@r
r
@v
@r

� �
: ð5Þ

By requiring axial symmetry of the velocity profile and the non-slip
condition at the wall, the boundary conditions that must be satis-
fied by Eq. (5) are

@v
@r
ð0; tÞ ¼ 0; ð6Þ

vða; tÞ ¼ 0: ð7Þ

We consider that the zero-mean oscillatory flow is produced by a
harmonic pressure gradient that can be expressed as the real part
of @p/@x = Pxe�ixt, where Px is the constant amplitude of the pres-
sure gradient. The axial velocity component can then be expressed
as the real part of v(r, t) = V(r)e�ixt. Therefore, from Eq. (5), the func-
tion V(r) satisfies the equation

d2V

dr2 þ
1
r

dV
dr
þ ðtmx2 � ixÞ

g=q
V ¼ ð1þ ixtmÞ

g
Px: ð8Þ

The solution of Eq. (8) that is compatible with boundary conditions
(6) and (7) is given by

VðrÞ ¼ UðxÞ 1� J0ðbvrÞ
J0ðbvaÞ

� �
Px; ð9Þ

where
UðxÞ ¼ 1þ ixtm

b2
vg

¼ i
a2 De
gxtm

¼ i
a2

gWo2 ; ð10Þ

and

b2
vðxÞ ¼

1
a2 De

½ðxtmÞ2 � ixtm� ¼
Wo2

a2 ½DeWo2 � i�: ð11Þ

Here De = gtm/a2q is the Deborah number that gives the ratio of the
relaxation time tm to the viscous diffusion time, qa2/g. Likewise, the
square of the Womersley number, Wo2 = a2qx/g, is the ratio of the
viscous diffusion time to the characteristic oscillation time, 1/x. In
addition, J0 is the cylindrical Bessel function of the first kind and
zeroth order. It is worth mentioning that the product DeWo2 gives
the Weissenberg number Wi = xtm, whose value is sometimes used
to distinguish between the Newtonian-like or the elastic-like char-
acter of the system [18]. However, we prefer to stick here to the
Deborah number for this purpose since the Newtonian limit is ob-
tained directly when tm ? 0.1 As a matter of fact, the velocity profile
(Eqs. (9)–(11)) reduces to the one of the oscillating Newtonian flow
through a pipe in the limit De ? 0 [12,24].

For a proper comparison with Kurzweg’s results, it is convenient
to introduce the tidal displacement, Dx, that represents the cross-
stream averaged maximum axial distance which the fluid elements
travel during one half period of the oscillation [13]. It is defined by

Dx ¼ 1
A

Z p=2x

�p=2x

Z 2p

0

Z a

0
vðr; tÞr dr dh dt

����
����; ð12Þ

where A = pa2 is the cross-sectional area of the tube. Once the expli-
cit form of the velocity profile is introduced into Eq. (12) and the
integration is carried out, we get

Dx ¼ 2iPx

x
1þ ixtm

b2
vg

 !
1� 2

bva
J1ðbvaÞ
J0ðbvaÞ

� ������
�����

¼ 2a2

gx
Px

Wo2 1� 2
bva

J1ðbvaÞ
J0ðbvaÞ

� �����
����; ð13Þ

where J1 is the Bessel function of the first kind and first order. As
pointed out by Kurzweg [13], in order to avoid direct convective
mass transfer, the value of Dx is always taken as smaller than the
distance between the fluid reservoirs at different temperature.

2.2. Temperature profile

The corresponding fluid temperature T(r,x, t) within the tube is
described by the heat transfer equation (3) which in cylindrical
coordinates and under the previous assumptions is expressed as

@T
@t
þ v @T

@x
¼ a

@2T
@r2 þ

1
r
@T
@r
þ @

2T
@x2

 !
: ð14Þ

If we consider that the tube wall is thermally insulated and that the
fluid temperature cannot diverge at the origin, Eq. (14) must satisfy
the boundary conditions

@T
@r
ða; tÞ ¼ 0; ð15Þ

Tð0; tÞ ¼ finite: ð16Þ

To get the analytical solution of Eq. (14) with conditions (15) and
(16) for the velocity profile under consideration is not a trivial task.
In fact, Kurzweg addressed the problem through an approximate
ca
sm
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solution valid only for small values of the product PrWo2 [12]. Note
that in a motionless fluid where only pure molecular diffusion of
heat exists, the axial temperature gradient is constant. Following
Kurzweg [13], we note that in the geometry considered here, the
time-averaged axial temperature gradient, c = @T/@x, is also con-
stant. Due to this fact, we propose a solution given as the real part
of the expression

Tðr; x; tÞ ¼ c½xþ gðrÞe�ixt�; ð17Þ

which, incidentally, reproduces the constant time-averaged axial
temperature gradient while accounts for the time-dependent
cross-stream variation of the temperature through the term
g(r)e�ixt. Substituting Eq. (17) into Eq. (14) yields

d2gðrÞ
dr2 þ 1

r
dgðrÞ

dr
þ i

x
a

gðrÞ ¼ VðrÞ
a

; ð18Þ

which is a non-homogeneous zeroth-order Bessel equation. The
general solution of Eq. (18) is

gðrÞ ¼ c1J0ðbT rÞ þ c2Y0ðbT rÞ þ gpðrÞ; ð19Þ

where b2
T � ixtm Pr=a2 De ¼ iPr Wo2=a2, gpðrÞ is a particular integral

of Eq. (18) and Y0 is the Bessel function of the second kind and zer-
oth order. The function gp(r) is obtained by the method of undeter-
mined coefficients, as indicated in the appendix. From condition
(16), we have g(0) = finite, and to avoid the divergence of Y0 at
the origin we set c2 = 0. Therefore, the general solution can be cast
into the form

g ¼ c1J0ðbT rÞ þ UðxÞPx

aaðb2
v � b2

TÞ
J0ðbvrÞ
J0ðbvaÞ þ

UðxÞPx

aab2
T

: ð20Þ

Due to the thermally insulated condition (15), the function g(r)
must satisfy g

0
(a) = 0. Hence, we finally arrive at

gðrÞ ¼ UðxÞPx

aaðb2
v � b2

TÞ
� bv

bT

J1ðbvaÞ
J0ðbvaÞ

J0ðbT rÞ
J1ðbT aÞ þ

J0ðbvrÞ
J0ðbvaÞ þ

ðb2
v � b2

TÞ
b2

T

" #
:

ð21Þ

With Eq. (21) the temperature distribution of the fluid inside the
tube is completely determined from Eq. (17). Two important points
must be stressed at this stage. Firstly, we have found an exact lo-
cally valid solution of Eq. (14), in contrast with the approximate
solution obtained by Kurzweg [12]. Secondly, our solution is valid
for both Maxwell and Newtonian fluids in the appropriate limit.
In fact, as stated before, the Newtonian limit is obtained by taking
tm ? 0 or, equivalently, De ? 0.
0 001110.
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Fig. 1. Effective thermal diffusivity, ae, normalized by x(Dx)2 in the Newtonian
limit (De = 0) as a function of the Womersley number, Wo, for different Prandtl
numbers: Pr = 1000 (solid line); Pr = 10 (dashed line); Pr = 1 (dotted line).
3. Enhanced thermal diffusivity

In order to calculate the enhanced heat transfer that takes
place between the hot and cold extremes of the tube, we calcu-
late the effective averaged thermal diffusivity, ae, which is based
on the velocity and temperature distribution of the fluid within
the tube, obtained in the previous section. Similarly to Kurzweg
[13], we neglect the small contribution due to axial thermal con-
duction, so that the effective averaged thermal diffusivity can be
defined as

aec ¼ �
x

2pa2

Z 2p
x

0

Z a

0
½Tðr; x; tÞ�R½vðr; tÞ�Rr dr dt; ð22Þ

where the subscript R denotes the real part of the corresponding
variable. The left-hand side of Eq. (22) represents the effective axial
thermal flux per unit cross-sectional area and the right-hand side,
the time-averaged convective thermal flux produced by the interac-
tion of the cross-stream-varying velocity and temperature profiles.
Then, substituting the explicit forms for T and v into (22) and per-
forming the time integration leads to

ae ¼ �
1

2a2

Z a

0
½VðrÞgðrÞ þ gðrÞVðrÞ�r dr; ð23Þ

where the overbar denotes complex conjugation. The effective ther-
mal diffusivity can be conveniently normalized by the quantity
x(Dx)2, given in terms of the tidal displacement (13). Explicitly,
we have

xðDxÞ2 ¼ 4P2
x a6

ag2PrWo6 1� 2J1 bvað Þ
bvaJ0ðbvaÞ

� �2
�����

�����: ð24Þ

Introducing the expressions for V(r) and g(r) [cf. Eqs. (9) and (21)]
into Eq. (23) and carrying out the radial integration, yields

ae

xðDxÞ2
¼ Pr

8a3

Wo2

1� 2
bv a

J1ðbv aÞ
J0ðbv aÞ

h i2
����

����
(

1
ð�b2

T � �b2
vÞ

J1ð�bvaÞ
J0ð�bvaÞ

�
�bv

ð�b2
T � b2

vÞ
�

�bvbv
�bTð�b2

T � b2
vÞ

J0ð�bT aÞ
J1ð�bT aÞ

J1ðbvaÞ
J0ðbvaÞ

"

þ
�bv

b2
v � �b2

v
þ

�bv �b2
T � �b2

v
� 	

�b2
v � b2

v
� 	

ðb2
v � b2

TÞ

#
þ 1

b2
T � b2

v
� 	 J1ðbvaÞ

J0ðbvaÞ

� bv

b2
T � �b2

v
� 	� bv

�bv

bT b2
T � �b2

v
� 	 J0ðbT aÞ

J1ðbT aÞ
J1ð�bvaÞ
J0ð�bvaÞ

"

þ bv
�b2

v � b2
v
þ

bv b2
T � b2

v
� 	

b2
v � �b2

v
� 	

�b2
v � �b2

T

� 	
#)

: ð25Þ

We remark that Eq. (25) is the main result of this paper. For the
numerical evaluation of this equation we use the software package
Mathematica [25]. First, we verify that in the appropriate limit, Eq.
(25) can recover Kurzweg’s results for the heat transfer enhance-
ment with a Newtonian oscillating fluid. Since the effective thermal
diffusivity for an oscillating flow in a tube found by Kurzweg is
based on the approximation Pr Wo2� 1 [12], a full comparison
with his results in that case is not possible. Instead, a comparison
is made against the results presented by Kurzweg for the case of
an oscillating Newtonian viscous flow within a parallel-plate chan-
nel [13] where the quantity ae/x(Dx)2 versus the Womersley num-
ber is plotted for different Prandtl numbers. A similar plot arising
from the use of Eq. (25) in the limit De ? 0 is displayed in Fig. 1
for Pr = 1, 10 and 1000. This plot clearly shows that for each Prandtl
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number, a maximum in ae/x(Dx)2 is found for a given Wo in agree-
ment with the results of Ref. [13] for a parallel-plate channel. Note
that, in spite of the geometrical differences, the values of the max-
ima in our case (	0.02) are very close to those of Kurzweg [13]. The
present result confirms that the enhanced thermal diffusivity is pro-
duced by the interaction between the velocity profile and the tem-
perature distribution inside the tube.

The presence of elastic effects in the fluid, as reflected by a non-
zero Deborah number, has indeed an important influence on the
enhanced thermal diffusivity, which now displays resonant behav-
ior. This is illustrated in Figs. 2 and 3. In the first one, taking a fixed
Pr = 10, the presence of a second maximum in the enhanced ther-
mal diffusivity (within the same frequency interval considered in
Fig. 1) is shown for De = 0.01, De = 0.1 and De = 1. This second max-
imum shifts to lower frequencies and its magnitude grows as the
Deborah number is increased; at De = 1 it is of the same magnitude
as the one of the purely Newtonian fluid. For even higher Deborah
numbers and also with a fixed Prandtl number (cf. Fig. 3) further
maxima appear in the same frequency interval and the effective
00001001110.0
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Fig. 2. Normalized effective thermal diffusivity as a function of the Womersley
number, Wo, for a fixed Prandtl number, Pr = 10, and various Deborah numbers.
Newtonian fluid: De = 0 (solid line); Maxwell fluid: De = 0.01 (dotted line); De = 0.1
(dashed line); De = 1 (dot-dashed line).
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Fig. 3. Normalized effective thermal diffusivity as a function of the Womersley
number, Wo, for a fixed Prandtl number, Pr = 10, and various Deborah numbers.
Newtonian fluid: De = 0 (dashed line); Maxwell fluid: De = 1 (dotted line); De = 10
(solid line). In this last case the curve has not been drawn beyond Wo = 2 because
the number and closeness of the resulting further peaks would only mess up the
figure without providing any extra information.
thermal diffusivity for the Maxwellian fluid may be orders of mag-
nitude higher than the one of the Newtonian case. Note also that
the lowest Deborah number considered in Fig. 2, namely
De = 0.01, is much lower than the one (De = 0.085) for which the
dynamic permeability manifests the change from Newtonian to
viscoelastic behavior [6]. It has to be emphasized that the existence
of multiple maxima in the effective thermal diffusivity for the vis-
coleastic case, in contrast to the single maximum found for the
Newtonian fluid, is directly related to the nature of the Maxwell
fluid. In other words, the existence of a resonant behavior mani-
fests the interaction between the viscous dissipative effects and
the elastic properties of the material. In fact, a resonant behavior
has also been found theoretically and experimentally in studies
of the dynamic permeability of viscoealstic fluids [7,9,10].

It is also important to mention that, for Deborah numbers great-
er or equal than one, the position of the different maxima as a func-
tion of Wo appearing in the enhanced thermal diffusivity does not
shift with varying Prandtl number, as can be seen in Fig. 4 where
we have chosen De = 10. This feature differs from the Newtonian
case, shown in Fig. 1, in which the maxima occur at different Wo
numbers for each Prandtl number. Note also that in the Newtonian
fluid the maxima have approximately the same magnitude. In con-
trast, in the viscoelastic case the first maximum occurs at the same
Wo for different Prandtl numbers, but the corresponding maxima
now have different magnitudes. As pointed out before, there may
be a quite remarkable enhancement in the effective thermal diffu-
sivity when a viscoelastic fluid is used. This could lead to an inter-
esting heat pumping process with technological applications. In
particular the possibility arises of applying the previous result to
nanofluids with suspended particles [2,26], in instances where
such fluids may be described as viscoelastic fluids.

From the practical point of view, it is also important to have a
quantitative estimation of the heat transfer enhancement. With this
aim, let us compare the axial heat flux under oscillatory conditions,
q00o, with the purely molecular heat flux in the same direction, q00m. For
a given, temperature gradient, we have that q00o ¼ �qcaeð@T=@xÞ and
q00m ¼ �kð@T=@xÞ. Therefore, the ratio of the heat fluxes q00o and q00m
becomes

Hx ¼
�kâe

@T
@x

�k @T
@x

¼ âe; ð26Þ

where âe ¼ ae=a is the dimensionless effective thermal diffusivity.
This result shows that for a fluid with constant properties, the heat
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Fig. 4. Normalized effective thermal diffusivity as a function of the Womersley
number, Wo, for a fixed Deborah number, De = 10 and two Prandtl numbers: Pr = 10
(dashed line); Pr = 1000 (continuous line). Clearly the resonant frequencies in this
case do not depend on Pr.



Table 2
Parameters at resonant conditions of the effective thermal diffusivity for water
oscillating in a nano tube of radius a = 100 nm considering different relaxation times.

tm (ns) De Wo n1 x/2p (MHz) âe

20 1.74 1.95 0.4 52.7 0.004
200 17.4 1.15 2.7 18.3 18.7
2000 174.3 0.62 10.2 5.3 8
20,000 1743 0.35 35 1.7 42
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flux under oscillatory motion is âe times the molecular heat flux.
Therefore, for values âe > 1, the oscillatory motion of the fluid leads
to an effective heat transfer enhancement.

Let us now consider specific examples of the enhanced thermal
diffusivity. First, we take a viscoelastic fluid that has been used to
analyze experimentally the dynamic response of oscillatory flows,
where a resonant behavior of the dynamic permeability has been
observed [9,10]. The fluid is an aqueous solution of cetylpyridin-
ium chloride and sodium salicylate (CPyCl/NaSal) which is known
to exhibit the rheological behavior of a linear Maxwell fluid in a
range of concentrations [27]. With a 40:40 concentration, the
known properties of the fluid at 25 �C are the following:
g = 30 Pa s, q = 1005 kg/m3, tm = 1.25 s [10]. In the experiments,
the fluid was set in oscillation by the harmonic motion of a piston
within a tube of 0.5 m length and a radius a = 0.025 m [9,10]. Un-
der these conditions, the Deborah number is De = 59.7. The ampli-
tude of the pressure gradient can be calculated as Px = qxox2,
where xo = 0.01 m is the displacement amplitude of the piston.
The thermal diffusivity of the fluid is not available. Since it is an
aqueous solution with a viscosity much higher than the viscosity
of water, we will consider two Prandtl numbers one and two or-
ders of magnitude higher than that of water, namely, Pr = 100
and Pr = 1000. Heat transfer enhancement requires a tuning pro-
cess. The plots of the normalized effective thermal diffusivity ver-
sus the Womersley number are used to estimate the value the
enhanced diffusivity under resonant conditions. For the given De
and Pr, the Womersley number for resonant conditions is deter-
mined and, therefore, the resonant frequency is also obtained.
Hence, in terms of the tidal displacement and the resonant oscilla-
tion frequency, the enhanced thermal diffusivity is given by ae = -
nix(Dx)2, where ni is the value of the local maximum of the ratio
ae/x(Dx)2 for the ith resonant Womersley number. The results ob-
tained for the two Prandtl numbers are shown in Table 1. For
Pr = 100, the first resonant Womersley number leads to an effective
enhancement, namely, âe ¼ 9. In turn, for Pr = 1000 the first reso-
nance gives no enhancement, but the second resonance leads to
âe ¼ 12. For the conditions and high Prandtl numbers considered,
the estimated temperature difference produced by viscous heat
generation is negligible (DT 	 10�3–10�4 K).

The previous example corresponds to a macroscopic applica-
tion. We now address a nanomechanical resonator operating at
high frequencies. Karabacack et al. [17] have studied these systems
in a gaseous environment while Verbridge et al. [28] analyzed dif-
ferent liquids, including water. Here we consider a nano channel
filled with water with a radius of a = 100 nm and a length
L = 1lm. Similar dimensions have been considered in recent exper-
imental studies [28]. The physical properties of water at 25 �C are
q = 996 kg/m3, g = 8.68 � 10�4 kg/m s, a = 1.5 � 10�7 m2/s, so that
Pr = 5.77. We assume that the pressure change during oscillations
is of the order of two atmospheres (2 � 105 Pa) which is within
the order of magnitude used in nanomechanical resonators [17].
With the considered length, the amplitude of the pressure gradient
is Px = 2 � 1011 Pa/m. In gases, for instance nitrogen, the relaxation
time at nanoscales ranges from nanoseconds to microseconds and,
according to the work pressure, seems to follow the relation
Table 1
Parameters at resonant conditions of the effective thermal diffusivity for a CPyCl/
NaSal solution oscillating in a tube of radius a = 0.025 m, considering different Prandtl
numbers. The corresponding Deborah number is 59.7.

Pr Wo ni x/2p (Hz) Px (Pa/m) Dx (m) âe

102 0.815 (1st) 8 (1st) 5 (1st) 10,114 3 � 10�3 9
103 0.13 (1st) 0.02 (1st) 0.12 (1st) 5.6 5 � 10�5 3 � 10�6

103 0.815 (2nd) 1.1 (2nd) 5 (2nd) 10,114 3 � 10�3 12
tm / 1/p [17]. For liquids, the relaxation time is expected to be
higher than for gases. Unfortunately, detailed information of the
relaxation time of water at nanoscales is not available. Therefore,
in order to estimate the effective thermal diffusivity in water nano
channels, we have considered different relaxation times that vary
from 20 ns to 2 � 104 ns. The lower limit (tm = 20 ns) matches the
relaxation time of nitrogen at 1 atm [17]. Results are shown in Ta-
ble 2 where the relaxation time and the corresponding Deborah
number appear in the first and second columns. The third and
fourth columns show the Womersley numbers of the first reso-
nance and the values of the maxima, while the fifth column shows
the corresponding resonant frequencies. Notice that all resonant
frequencies are in the order of MHz, as those used in water nanore-
sonators [28]. Finally, the dimensionless effective thermal diffusiv-
ities shown in the sixth column, predict a heat transfer
enhancement except for the lower relaxation time.

4. Conclusions

In this paper, we have analyzed the heat transfer enhancement
in an oscillatory flow of a viscoelastic (Maxwell) fluid in tubes.
Through analytical solutions for the velocity and temperature dis-
tributions of the fluid inside the tube valid for both Maxwellian
and Newtonian fluids, we have obtained an expression of the effec-
tive thermal diffusivity. In the case where the relaxation time goes
to zero (Newtonian limit) our result agrees with that of Kurzweg
[13]. As a matter of fact, within the oscillatory laminar flow condi-
tions, we have extended the work of Kurzweg by providing an ana-
lytic result for any value of Wo2 Pr and also by accounting for the
viscoelastic properties of the Maxwell fluid. The inclusion of the
elastic properties of the fluid leads to interesting features not pres-
ent in the Newtonian case. In particular, for several specific reso-
nant frequencies, a dramatic enhancement in the effective
thermal diffusivity may occur when a viscoelastic fluid is used. In
this instance, apart from the dependence on the Womersley and
Prandtl numbers, we have a dependence on the Deborah number.
In fact, the maximum value of ae/(xDx2) as a function of Wo
may be greater than the one for the Newtonian case for the same
Prandtl number. We find that the larger the Deborah number the
larger the value of the maximum. We provided a specific example
of heat transfer enhancement using a standard viscoelastic fluid
(CPyCl/NaSal) in a device with a scale of centimeters. Since the
Deborah number increases as the characteristic length decreases,
a possible application of this result may be in heat transport under
nanofluidic conditions or flow in capillary tubes. In order to illus-
trate this possibility, considering similar conditions as those used
in water nano resonators [28], we have predicted an effective heat
transfer enhancement using water under oscillatory conditions at
nano scales.

Given the recent interest in high-frequency oscillatory flows for
micro- or nano-scale applications in which rheological behavior is
manifested, we hope that the consequences of considering a non-
Newtonian fluid for heat transfer as derived in this paper may pro-
vide new insights for the use of oscillatory flows at small scales.
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Appendix A. Derivation of gp

We assume that gp(r) is given by

gpðrÞ ¼ d1J0ðbvrÞ þ d2; ðA:1Þ

where d1 and d2 need to be determined. After substitution of Eqs.
(A.1) and (9) into Eq. (18) one gets

d1J000ðbvrÞ þ 1
r
d1J00ðbvrÞ þ i

x
a
½d1J0ðbvrÞ þ d2� ¼

UðxÞ
aa

1� J0ðbvrÞ
J0ðbvaÞ

� �
Px:

ðA:2Þ

Use of the Bessel function identities allows us to write

�d1b
2
v J0ðbvrÞ þ d1i

x
a

J0ðbvrÞ þ d2i
x
a
¼ UðxÞ

aa
1� J0ðbvrÞ

J0ðbvaÞ

� �
Px;

ðA:3Þ

which after simplification becomes

�d1 b2
v � i

x
a


 �
J0ðbvrÞ þ d2i

x
a
¼ UðxÞPx

aa
�UðxÞPx

aa
J0ðbvrÞ
J0ðbvaÞ : ðA:4Þ

Therefore, it follows that the undetermined coefficients are given by

d1 ¼
UðxÞPx

aa b2
v � b2

T

� 	
J0ðbvaÞ

and d2 ¼
UðxÞPx

aab2
T

: ðA:5Þ

Hence, the particular integral gp is given by

gp ¼
UðxÞPx

aa b2
v � b2

T

� 	 J0ðbvrÞ
J0ðbvaÞ þ

UðxÞPx

aab2
T

: ðA:6Þ

Substitution of this result into Eq. (19) yields Eq. (20) of the text.
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